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Abstract—The steady heat transfer across laminar, incompressible, constant property boundary layers
over wedges with a step discontinuity in surface temperature is investigated. The analysis begins with an
appropriate transformation of the energy boundary layer equation with the consequence that the non-
similar solution of the problem decomposes into an infinite sequence of simple, similar solutions. Of signifi-
cance is the fact that these similar solutions are expressible as universal functions and, thus, can be tabulated
once and for ail. For fluids with Prandtl number of the order of unity or larger, only a very few of the
functions are needed to achieve results of high accuracy. A tabulation of such functions is given. With
these, the determination of the temperature field in the boundary layer, as well as the local heat transfer
rate at the wedge surface, becomes a matter of simple arithmetic. Similar information for wedges with any
arbitrarily prescribed surface temperature distribution can likewise be obtained.

NOMENCLATURE

d, 10y,

a,, coefficientsin series (4), beginning with
n=2anda, = a;

b, (aPr/31)Y3;

¢, G2ae-pmn"

Cp specific heat ;

k, thermal conductivity ;

M, 3B/2ab;

Pr, Prandt] number;

G heat flux at wall;

Re, Reynolds pumber = u,x/v; for flat
plate u; = u,;

St, Stanton number = g,,/c, pu,
(T, — T,); for flat plate u, = u,

T, temperature ;

u, velocity component in x-direction ;

v, velocity component in y-direction;

X, transformed dimensionless coordi-
nate defined in (7a);

X, coordinate along wedge surface ;

¥, coordinate normal to wedge surface;

* Present address, College of Agricultural Engineering,
Punjab Agricultural University, Ludiana, Punjab, India.

B, wedge angle divided by n;

I'(n), gamma function = [Ja" 'e”*da;

I'(nx), incomplete gamma function = {3}
oo  da;

n, dimensionless coordinate defined in
(2);

8, dimensionless temperature defined in
(6);

K, thermal diffusivity ;

v, kinematic viscosity;

g, transformed dimensionless coordi-
nate defined in (7b);

2, density,

Subscripts

i, refers to edge of velocity boundary
layer;

o0, refers to free stream ;

w, refers to wedge surface.

1. INTRODUCTION

IN MANY technological applications, heat trans-
fer by convection takes place over surfaces which
have a significant temperature variation in the
direction of the main flow. This non-uniformity
of temperature is often the consequence of
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design requirements. Rubesin [1,2] was pro-
bably among the first to recognize its importance
in the prediction of convective heat transfer rates.
In the steady flight of an aircraft or other objects
through the atmosphere, the boundary layer over
the forward portion of surfaces is generally
laminar. It is known that the influence of the
non-uniformity of wall temperature on the heat
transfer rate is more pronounced in laminar than
in turbulent flow. In the present investigation,
we restrict ourselves to the consideration of
laminar.incompressible, two-dimensional boun-
dary layers over wedges of an arbitrary opening
angle. The main objective is to develop a
procedure that would lead to results by which
the aforesaid influence can be readily and
accurately ascertained. Because of the linearity of
the energy equation, the heart of the problem is
to find the solution for a wedge with a step
discontinuity in surface temperature.

Tribus and Klein [3] reviewed in 1952 the
general problem of heat convection from non-
isothermal surfaces and presented a summary of
analytical results available at that time. They
described an ingenious procedure of finding the
wall temperature distribution when the heat
flux was prescribed. It made use of an integration
kernel which was appropriately modified from
that associated with a step discontinuity in
surface temperature. Of the more than a dozen
investigations reviewed in [3], the one by Levy
[4] dealt with incompressible, laminar wedge
flows. Consideration was there given to the case
in which the wall temperature had a power law
variation and the dissipative effects were negli-
gible. Under these conditions, the temperature
field is similar and, thus, the analysis becomes
greatly simplified. Tribus and Klein mentioned
a paper by Bond [5] which is also concerned
with wedge flows. To facilitate the solution of
the energy boundary layer equation, Bond used
a linear velocity distribution. The same approxi-
mation was adopted by Lighthill [6] in his
analysis of the general problem of heat transfer
across a laminar boundary layer with arbitrary
distribution of main stream velocity and of wall
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temperature. Both Lighthill’s and Bond’s solu-
tions are asymptotically correct for large Prandt]
number fluids. For a fixed Prandt] number, the
approximation is best for flows without longi-
tudinal pressure gradient. No attempt was made
in [3] to discuss the implications of the foregoing
approximation.

A number of papers concerning the prediction
of heat transfer from non-isothermal surfaces
appeared since 1952. They are reviewed in a
recent thesis by the junior author [7] and, thus,
will not be repeated. Suffice it to state that
attempts aiming at improving Lighthill’s result
have been made by incorporating a more
accurate velocity distribution. These attempts
have not generally been successful.

2. PROBLEM STATEMENT, GOVERNING
EQUATION AND COORDINATE
TRANSFORMATION

Consideration is hereby given to the steady,
two-dimensional, laminar, incompressible flow
over a wedge at sufficiently high Reynolds
numbers that the usual boundary layer simpli-
fication is valid. The physical model and the
coordinate system are shown in Fig. 1. An

Fi1G. 1. Physical model and coordinate system.

initial portion of the wedge surface of length x,
is at the temperature T,, of the incoming fluid.
The remaining portion of the wedge surface,
X > Xg, has a uniform temperature T, which is
different from T,_. The resulting temperature
variation is limited so that possible changes in
fluid properties are small and may be ignored.
Under the foregoing conditions, the thermal
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problem becomes linear and solutions for any
arbitrary surface temperature can be obtained
by superposition. Since the dissipative effects,
if significant, can be separately assessed, they
will not be included in the analysis which follows.
For a wedge of included angle nf, placed
symmetrically in a uniform main stream, the
velocity u, at the edge of the boundary layer is
Cx™, C being a constant and m = /(2 — p).
Falkner and Skan were the first 10 recognize
that the velocity profile in such boundary layer
flow is similar and, later, Hartree obtained
detailed solutions for the flow field. It is now
well known (see e.g. [8]) that the velocity
components (u, v) are given by
u v _
—=f,—Ret = -2 =B *[f-(1 - Pnf]
Uy Uy

(la,b)

where # is the similarity variable defined as

1w\
=yl 2
n (2 = ﬂvx) 2
and the dimensionless stream function f(n)
satisfies

ST+ B =0 (3)
with
f(0) =f(0)=0; f(0) =1 (3a)

In the foregoing, the primes denote differentia-
tion with respect to . The power series solution

for fis
f=Z S @
n!

a, =a,ay = —f,a, =0,a5 = (2f — 1)a?,
ag = —2(3B — 2)Ba,a, = 2(3f — 2)B?, etc. (4a)

Numerical values of a for various § have been
extensively tabulated ; the more recent ones are
by Elzy and Sisson [8].

Under the assumptions previously stated, the
energy boundary layer equation is

with
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u oT +v oT =K

ox 8y Oy

and its solution which we seek must satisfy the
following entrance and boundary conditions

T(xe,y >0) =T, (5aj
T(x > x4,0) = T, T(x,0) = T,. (5b,c)

Because of the presence of the reference length
X,, the temperature field is, in general, non-simi-
lar.

To facilitate analysis, we introduce a dimen-
sionless temperature function,

oT )

T-T,
0= T, - T, (6)
and a coordinate transformation,
) (X = [1 _ <@) i (Ta)
x) |
= n
=b—. b
y X (Tb)

Clearly, both X and & are dimensionless. The
specific forms chosen are motivated from the
following considerations.

(i) In anticipation of developing a series
solution in powers of X, it would be desirable to
have the range of X restricted. Equation 7(a)
requires that X is bounded between 0O and 1.

(ii) The approximation of using a linear
velocity distribution corresponds to retaining
only the first term of the series for f: ie.
f = (1/2)an* Under this condition, the tempera-
ture field becomes self-similar [5]. For later
reference, it will be designated as the reduced
problem. The transformed coordinate ¢ defined
in (7b) is the similarity variable of the reduced
problem.

(ii1) In order that the end result of the analysis
has general applicability and is simple to use,
individual terms in the series solution should
only comprise of functions that are universal, i.e.
they can be tabulated once and for all. Further-
more, it is desirable, though not necessary, that
the dominant terms of the series can be expressed
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in closed form, thus rendering possible an analy-
tical description of the essential features of the
solution.

Using (6) and {7a.b), (5) becomes

829 1
852 [ f(rl) +t = éj (’1)]
Pr X3
— 5zl = X1 ) )
with
X0 =1, 6X,w0)=0. {(9a,b)
In(8).0 € X € 1and0 < £ < oo ;theargument

n of the stream function is related to ¢ according
to (7b). Because of the form chosen for &, the
entrance condition (5a) merges into (9b).

If the entire wedge surface has a uniform
temperature, then x, = 0 and, hence, X = 1
and & = bn. When this occurs, # depends only on
n and (8) and (9a,b) reduce to the following
familiar forms.

d2e,
180 P 150 —_ 0 10
o Prf e (10)
with
00 =1, O, (o0)=0 (11a,b)

The subscript iso refers to the isothermal sur-
face condition. The solution of (10) satisfying
(11a,b) has been extensively studied. A recent
tabulation of the wall derivatives 8, (0) for wide
ranges of Pr and $ may be found in [9].

3. SOLUTION METHOD AND RESULTS

We seek a series solution for (8) of the form

0= 3 FOX" (12)
with
Fo0) = 1; Fy0) = Fy0)=... =0 (13a)
and
Foloo) = Fy(00) = ... = 0. (13b)
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Hence, the boundary conditions (9a, b) are
satisfied. Upon substituting (12) into (8) and
comparing the coefficients of like powers of X,
we obtain a sequence of second order, linear,
ordinary differential equations which are given
below (the primes denote differentiation with
respect to &),

Fy + 3E*F, =0 (14a)
Fi + 3&%F| — 3¢F, = g,F, (14b)
Fj + 3E%F) — 66F, = g, F, —h,F,  (l4c)
etc. In general, forn > 1
Fy + 38%F, — 3néF, = g,Fo + g, F,
+ ...+ gFyoy — by Fy —2h, ,F,
—~...—(n— DhF,_, (14)
wherein
3a 1
g1= — 2a;£3 g.=0
3 a
9= "3ap ¥
18 (lﬁ 6 J3 3
94= " Siapr " T 2ab°
3 2 > (15)
9s = S'azbzPri
etc. and
g /K]
h,=2", h,=0, hy=3+==
1 é 2 3 é é
1 g
h4=2(g4-?1>,etc. ]

Equation (14a) with the assigned boundary
conditions, Fo(0) =1 and Fy(oo) =0, can be
integrated in closed form. The solution is

r/3), &%

= 1 e
Fo r'(1/3)

(16)

and

= — 1198,

Fol0) = — (17)

(1/3)

An examination of the equation set (14) in
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conjunction with (15) reveals that, if all a,’s
vanish, except a,, then all F,’s other than F,
would vanish. This is the case when f = (1/2)an?.
Hence, the solution of the reduced problem
previously defined is simply

0=F, (18)
and the corresponding wall heat flux is
on 0¢
= — —T,)——=Fy0
1 u, \/2
= 061 T, —T )
6163k(T, ao)(2 - ﬂvx)
(aPr)t3 X1, (19)

These are precisely Bond’s results {5], although
they were obtained by Bond from a totally
different procedure. Since the local friction
coefficient is

1 0u 1 v\
=v—5—0)=2-—5— 20
cf 2V u% ay (0) <2 _ ﬁu1x> a, ( )
(19) may be expressed in terms of the local
Stanton number as

2
St Pr* — = 06163a"* X~ 1.

1)
r
For a flat plate, B=0a=04696,
X = [1 — (xo/%)*]* and, hence, (21) reduces to
St 2 129 (22)

¢, = (xg/0f*

which becomes identical to Eckert’s result [10]
if the numerical constant 1-020 is replaced by
unity. Eckert deduced his expression from the
integral heat balance equation, using third-
degree polynomials for both the velocity and
temperature profiles. Considering the fact that
(22) is obtained for linear velocity distribution,
the close agreement is probably fortuitous.

For large Prandtl number fluids, the thermal
boundary layer is everywhere thin relative to
the velocity boundary layer. Under such circum-
stance, (18), (19) and (21) may be expected to
yield very satisfactory results, We shall return
to this point later.
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The equation for F, can also be integrated in
closed form. Since g, = (3/2)(B/ab)é* and F, =
— [3/I(1/3)]e~%, (14b) can be written as

9 B, e
" 2 - L 3 { 2
Fi+38F, = 3¢F = — 5 2 8670 (23)
If a related function F, is defined such that
F, = MF, (24)
with
3p
M= Ep (25)
then
F| + 36*F, — 3¢F, = _ 3 £ (26)
1 LT T TR

with F,(0) = F,(c0) = 0. Clearly, F,, like F,,
depends only on ¢ and, thus, can be tabulated
once and for all. For this reason, they will be
referred to as universal functions.

An equivalent form of (26) is

FN' (2 0o\(BY_ 3 e
<<f) +<f+35><c) 3" ©
@)

which, upon integrating twice and using the
stated boundary conditions, yields

_ 1 , ,
Fi = 5pm) L0643 - 1653, ). (28
It follows that
o1
Fi0) = = )

An inspection of the equation for F, discloses
that it, too, can be rewritten in terms of a uni-
versal function F, defined by

F, = M°F,, (30)

The fourth function F; can be expressed as a
linear combination of two universal functions
F, ,and F; , according to

— 1-2
F3=M3F3’1+ ﬂ

Fy,. ()
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Table 1. Universal functions

¢ F, F, x 10 F, x 10? F,, x 10? F,,x 10 Fo. it x 10> F .t x 107
00 1-00000 0-00000 0-00000 0-00000 0-00000 000000 0-00000
o1 0-88804 0-06666 0-08177 0-01721 002075 004140 — 001046
02 0-77648 0-13316 0-16382 003453 004164 0-08136 —0:02110
03 0-66630 019867 0-24688 0-05221 0-06301 0-11628 —0-03240
04 0-55910 026116 0-33209 007060 008528 0-14078 —0-04523
05 0-45697 0-31706 0-42073 0-09012 0-10866 0-14881 —0-06082
06 036225 0-36147 0-51350 011120 013274 0-13567 —0-08061
07 027725 0-38899 0-60917 0-13425 0-15603 0-10015 —010542
08 0-20386 0-39506 0-70281 0-15949 0-17580 0-04626 —0-13406
09 0-14328 037765 0-78437 0-18668 0-18850 —001671 —016152
10 009574 0-33843 083922 0-21455 0-19073 —0:07615 —0-17859
11 006049 0-28298 0-85157 0-24016 0-18060 —0-11996 —0-17433
12 0-03593 021967 0-81056 0-25871 015877 —0-14056 —0-14166
1-3 0-01995 0-15747 071627 0-26439 0-12868 —013732 —0-08325
14 001029 0-10369 058216 0-25259 0-09552 —0-11606 —001312
15 0-00491 0-06238 043160 0-22249 006453 —0-08609 0-04866
16 0-00216 0-03409 0-28971 0-17851 0-03945 —0:05630 0-08583
1-7 0-00088 0-01683 0-17486 0-12909 002170 —0:03240 0-09356
18 0-00033 0-00746 009430 0-08339 0-01068 —001625 007890
19 0-00013 000296 004515 004774 000467 —0-00688 005465
20 000104 001907 002405 0-00181 —0-00218 003180
2-1 0-00032 0-00706 0-01058 0-00062 —0-00011 —0:01573
22 000227 0-00404 0-00018 0-00667
23 0-00063 0-00133 0-00249
24 0-00015 0-00037 0-00089

+Fq , and F , valid for 8 = O only.

The associated boundary conditions are,
respectively, F(0) = Fy(0) =0; F; ,(0) =
F,,{c0) =0 and F; ,(0) = F5 ,(c0) = 0. The
resulting differential equations, however, have
not been solved in closed forms. They were
integrated numerically, using routine iterative
techniques on the computer with a uniform
step size of A¢ = 0-05. Some details may be
found in [7]. The results, along with other
universal functions, are given in Table 1*. They
are also shown graphically in Figs. 2a and 2b.
The associated wall derivatives are

F,(0) = 081748 x 1072 (32)
_3,1(0) =017204 x 10°% and
F'y ,(0) = 020737 x 107 1.

(33a,b)

* More complete data with ¢ at multiples of 0-05, begin-
ning at 0 and extending to 3-95, are on deposit in the Heat
Transfer Laboratory, Department of Mechanical and
Industrial Engineering.

To check the accuracy of the numerical
procedure, the same computer program was
used to evaluate F,, Fo(0). F, and F,(0) and the
data were compared with the respective closed
form solutions given earlier. Values of the
gamma functions which appear in (16) and (28)
were taken from [11]. It was found that the
wall derivatives were in agreement up to the
fifth significant figure and all values of F and
F, agree to at least four significant figures for the
entire range of £.

A study of the general equation (14) shows
that it is always possible to express the F,
functions as linear combinations of universal
functions. The resulting second order, ordinary
differential equations can be routinely handied
on the computer. However, for fluids of Pr of
the order of unity and larger, highly accurate
results are obtainable with the several functions
already evaluated. An estimation of the maxi-
mum error resulting from retaining a finite
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FIG. 2a. Universal functions for wedges with arbitrary open-
ing angle.
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F1G. 2b. Universal functions for a semi-infinite flat plate.

number of terms in the series (12) will be pre-
sented in Section 4.

With the information provided in Table 1
and the values of the wall derivative listed, the
determination of the temperature field in the
boundary layer and the local wall heat flux for
wedges of any arbitrary opening angle becomes
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a matter of simple arithmetic. Before proceeding
further, we summarise the results as follows

(a) Temperature field in boundary layer

ox.H = 3 FOX"

— F, + MF,X + M?F,X?

= 1-28
+ (1\/131?3 L+ ﬁFM) X3+ ... (34)
’ Pr
(b) Heat flux at wall
,_.___‘&".______-_E{P -3ty 3x
oo T, — Ty~ 277 %)
a0
[— a_g(X’ 0)] (35)
where
o_( 1 vy
2 (2 - Bulx) (35a)
and

oo . .
- EE(X’ 0) = —XF,,(O)X

n=0

= 11198 — -I%MX — 081748 x 10”2 M2X?
- (0'17204 x 1072 M3 + 020737

L 1=28Y_,
x 10 T)X + ... (35b)
In the above, M = (3/2)(B/ab) =2.7257BPr *a™*
and X = [1 — (x,/x)""3@ =01} The é-coordin-
ate is related to y through (2) and (7b).

The case of longitudinal flow past a semi-
infinite flat plate (f = 0) is of particular interest,
both from the theoretical and practical point of
view. In this instance, F, and F, are identically
zero; so are F, and F. Moreover, since M = 0,
Fy = Pr 'F,,. To provide one more non-
vanishing term in the series solution, we have
evaluated Fo. The latter is expressible as a
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combination of two universal functions as

according to
Fo=Pr 'Fg | + Pr2Fg ,. (36)

Data for these two universal functions are also

included in Table 1. Their wall derivatives are

F, (0) = 041502 x 10”2 and
F’(,,Z(O) = — 010445 x 10”2 (37a,b)

Hence, for this case of flow with zero pressure
gradient, the temperature field is

KX, &) =F, + ProtF; ,Xx3

+ Pr_l(F(,.l + Pr_IF(,'z)X6 + ... (38)
and the wall flux is
q L - _
—_ = (030247Re * Pr i X!
cppuoo(Tw - Too) 3 TRe ’
a0
- —(X,0
[ 85( )] (39)
wherein
00

— %(X, 0)=11198 — 020737 x 10" 'Pr-1 X3

o Xo_ .
30 7 —0‘95\ /O 50
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— Pr1(041502 — 0-10445Pr~ 1) x 10~ 2 X°
+ ... (39a)

and
X =[1—(xq/x)¥1%, £ =030247Pr} (y/x)Re* X !

The development of the temperature profile
in the boundary layer, downstream of the surface
temperature discontinuity, can be readily ob-
tained from (34) or (38). They are illustrated in
Figs. 3a, b and c, respectively, for a flat plate
(B = 0), a wedge with 90 degree included angle
(8 = 0-5) and the stagnation flow condition
(8 = 10). In each figure, groups of profiles are
shown for Pr =1, 10 and 100 and for three
locations along the wedge surface. The results
show that at x,/x = 095, i.e. a location at which
the unheated length is 95 per cent of its distance
from the leading edge, considerable develop-
ment of the thermal boundary layer has already
taken place. At x,/x = 0-05 the development is,
for all practical purposes, complete. In fact, if the
fully developed similar profiles were plotted,
they would fall on those for x,/x = 0-05 within
the width of the line.

005

o+

Xo

20

10

Fi1G. 3a. Development of temperature profile downstream of the step
discontinuity in surface temperature—f = 0.
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FiG. 3b. Development of temperature profile downstream of the step
discontinuity in surface temperature—f = 0-5.

n

0
10 05 O
8

F1G. 3c. Development of temperature profile downstream of the step
discontinuity in surface temperature—f = 1-0.

as corrections for the departure of the actual
velocity profile from the linear distribution.

As has been pointed out earlier, the first term  Within a short distance downstream of the
of the series in (34) represents the mathematically  surface temperature discontinuity, the thermal
exact solution to the problem when the velocity boundary layer is thin and the corrections are
distribution is linear. The rest may be regarded small, regardless of the Prandtl number. On the

4. ACCURACY OF RESULTS
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other hand, at sufficiently large distance down-
stream where the thermal boundary layer has
had significant development, its thickness rela-
tive to the velocity boundary layer depends on
the Prandtl number. The effect on the tempera-
ture field due to the nonlinearity in the velocity
distribution will manifest itself to the fullest
when X = 1. Thus, the maximum error resulting
from using a finite number of terms in the series
occurs at X = 1. A portion of such error is
intimately connected with the inaccuracy in-
herent in the representation of the Falkner—Skan
stream function by the power series (4) which has
a limited radius of convergence.

It is clear that, when x, =0, X =1 for all
x’s > 0. This is the situation when the entire
wedge surface has a uniform temperature.
Hence, by setting X = 1 in (34) and comparing
the results to those obtained from integrating
{10) with boundary conditions (11a, b), an upper
bound of the errors for the entire range of £ can
be established. To this end, both (3) and (10)

B. T. CHAOand L. S. CHEEMA

were numerically integrated, using a scheme
essentially identical to that for evaluating
F,, F, , F, ,, etc. Since the wall derivatives
f7(0) and 6,,(0) are known, the integration
involves no iteration. In our computation, the
wall derivative data were taken from [9].

If one denotes the said upper bound of error
by (66),. then

(58)14 = 9(1’ é)t.s. - Biso

where ¢ = by. The subscript ts. designates
truncated series. Clearly, (66), depends on ¢&;
itvanishesat ¢ = Oandas ¢ ~» oo. The particular
value of £ at which (68), exhibits an extremal
depends on Pr and f. A summary of the results
of an extensive calculation is compiled in Table
2 which lists the extremes of the upper bound
error for the entire range of Pr and B investi-
gated. Included for the purpose of comparison
are error data evaluated from Bond’s equation
which is for the linear velocity distribution and
corresponds to the first term of our series. As

(40)

Table 2. Extremes of upper bound error in temperature field, (58)y, cxur omat

Pr 0.72 1 10 100
B Present Bond Present Bond Present Bond Present Bond
-01 0-01260 0-02158 0-00594 002102 —0-00152 001746  —0-00023 000297
00 0-00339 -0-01950 0-00248 ~0-01470 0-00024 —0-00165 0-00002 0-00017
02 001330 —0-05186 0-00862 - 004577 0-002035 —0-01705 0-00077 000732
04 001537 —0-07255 001185 - 006330 000314 —0-02530 0-00119 0-01099
06 0-02028 —0-08492 001481 -~ 007554 0-00382 -0-03117 000155 001346
08 002312 —0-09602 001747 - 0-08521 0-00494 — 003528 0-00176 0-01545
10 002609 —0-10540 0-02036 - 009305 0-00519 —0-03931 0-00199 0-01705
Table 3. Upper bound error in wall temperature derivative 1 — 8(1,0),, /0,,,(0)
Pr 072 1 10 100
B Present Bond Present Bond Present Bond Present Bond
-1:0  —000361 003691 -—0-00654 003567 —000197 002734  —0-00096 001412
0-0 0-00300 —0-02683 0-00166 - 002005 0-00001 -0-00221 0-00000 —0-00022
02 0-00817 —0-08292 0-00043 — 007261 000129 —0-02680 0-00059 —0-01149
04 001047 —0-11948 0-00777 ~0-10333 000221 —0:04017 000092 —001731
06 001518 —0-14270 001046 - 012548 0-00273 —004977 000124 -0-02127
08 001674 —0-16364 0-01237 —(-14337 000377 —0-05668 0-00139 —-0-02444
10 001771 —0-18154 001412 ~0-15822 0-00383 —0-06332 000156 -0-02701
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has been explained earlier, the use of a linear
velocity profile would lead to satisfactory results
when Pr is large. This is indeed borne out by the
data.

By following a similar line of reasoning, one
is also led to conclude that the upper bound
error in the wall heat flux resulting from using a
finite number of terms in (35b) or (39a) would
occur when X = 1. Since the numerical values
of the wall temperature derivative vary with Pr,
it is convenient to express such error in a ratio
defined as

0'(1,0),.
0iccl0)

Table 3 provides this information. It is seen that,
for Pr = 1, Bond’s expression entails an upper
bound error of 15-8 per cent when § = 1, while
the corresponding error in using four terms of
our series is 14 per cent. The exceptionally
high accuracy of the flat plate data (8 = 0),
evaluated from the present, as well as from
Bond’s expression, as shown in both Tables 2
and 3, is mainly due to the fact that, in the
absence of longitudinal pressure gradient, the
curvature of the velocity profile vanishes at the
wall. In addition, the series expressing
(06/0£)(1,0) as given in (39a) for the flat plate
has effectively more terms than the one given in
(35b).

Recentlv, Clausing [12] reported wall flux
data for longitudinal flow past a flat plate and
for Pr = 0:72 and 1-0. The data were obtained
by directly solving the governing conservation
equations for the boundary layer flow, using an
all numeric, finite difference technique. A com-
parison of the data evaluated from (39) and
(39a) with those of Clausing for x,/x ranging
from 0-05 to 0-909 reported by him shows that
in no case the discrepancy exceeds 04 per cent.
Clausing estimated that the absolute error in his
data was less than 0-5 per cent for 01 < (x4/x)
< 09. Hence, all evidence demonstrates beyond
doubt that the main results of the present analy-
sis—(34) or (38) for the temperature field; (35)
or (39) for the wall flux—are highly accurate for

1~ (41)
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fluids of Prandtl number comparable to or
greater than that of air. They are also simple
to use. However, similar accuracy is not likely
to obtain for smaller Prandtl number fluids.
An inherent error in the present analysis is the
representation of the velocity function f by the
power series (4) which has a limited radius of
convergence. This source of error is negligible
in high or moderately high Prandtl number
fluids since the thermal boundary layer is
everywhere confined to a relatively thin region
adjacent to the solid surface. This is not the case
when the Prandtl number is small.

An inspection of (34), (35b), (38) and (39a)
shows that, when Pris of the order of 10~ 21073,
the series does not converge except when X is
small. When this occurs, one may tacitly assume
that they are semi-divergent and Euler’s trans-
formation may be used for the evaluation of the
sum. Based on our own experience and that
reported in [13], the following procedure is
tentatively suggested.

To begin with, more terms in the series should
be computed. Since the exact solution for the
problem is available for a wedge with uniform
surface temperature and without the restriction
on Pr, the optimum number of terms to be
retained in the series and the best starting
point for the application of the Euler transforma-
tion can be ascertained by comparing the results
obtained for X =1 with the corresponding
exact solution. The same number of terms is then
used in evaluating the sum of the series when
X # 1 with the Euler transformation applied
in precisely the same manner.

5. CONCLUDING REMARKS

With the information provided in Table 1
and the values of the wall derivatives of the
universal functions given in the text, problems
with any arbitrarilly prescribed surface tempera-
ture variation can be handled in a straightfor-
ward manner either formally via the Duhamel’s
integral or by numerical superposition. We
refrain from giving the details since they are
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well documented in the literature. It is our hope
that the modus operandi of the analysis de-
scribed in this paper could be extended to treat
gencral two-dimensional and axisymmetrical
boundary layer flows. If this can be achieved,
then the Lighthill analysis is truly improved.
It is also conceivable that the highly accurate
results presented in the paper could usefully
serve as a comparison standard in the study of
trial solutions associated with integral methods
as described by Walz [14].
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CONVECTION FORCEE D'UN ECOULEMENT AUTOUR D'UN DIEDRE POUR DES
SURFACES NON ISOTHERMES

Résumé—On étudie le transfert thermique a travers des couches limites laminaires incompressibles a
propriétés constantes sur des diédres avec une température pariétale en échelon. L’analyse débute par une
transformation appropriée de 1’équation d’énergie de la couche limite avec pour conséquence que la
solution du probléme se décompose en une suite infinie de solutions simples réduites. L’intérét en est que
ces solutions réduites sont exprimables comme des fonctions universelles et par suite peuvent étre tabulées
une fois pour toutes. Avec des fluides ayant des nombres de Prandtl de ’ordre de 'unité ou plus, seul un
petit nombre de fonctions sont nécessaires pour obtenir des résultats avec précision. Une tabulation de ces
fonctions est donnée. La détermination du champ de température dans la couche limite aussi bien que
le flux pariétal local est une affaire d’arithmétique élémentaire. Une information semblable pour des diédres
avec une distribution de température superficielle donnée quelconque peut étre obtenue de la méme fagon.

ERZWUNGENE KONVEKTION BEI KEILSTROMUNG MIT
NICHTISOTHERMEN OBERFLACHEN
Zusammenfasseng— Es wird die stationdre Wirmeiibertragung in laminaren, inkompressiblen Grenz-
schichten mit konstanten Stoffeigenschaften iiber Keile mit stufenformigem Sprung in der Oberflichen-
temperatur untersucht. Die Analysis beginnt mit einer geeigneten Transformation der Encrgiegleichung
der Grenzschicht, aus der folgt. dass die nichtdhnliche Losung des Problems in eine unendliche Folge von
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einfachen dhnlichen Losungen zerfillt. Wichtig ist die Tatsache, dass sich diese dhnlichen Losungen als
universelle Funktionen ausdriicken lassen und deshalb ein fiir allemal tabelliert werden kénnen. Fiir
Fliissigkeiten mit Prandtl-Zahlen in der Grossenordnung von eins oder grosser werden nur einige wenige
dieser Funktionen gebraucht, um Ergebnisse mit hoher Genauigkeit zu erzielen. Einige Tabellen fiir
solche Funktionen werden angegeben. Mit diesen wird die Bestimmung des Temperaturfeldes in der
Grenzschicht ebenso wie die Bestimmung der ortlichen Warmestromdichte an der Keiloberfliche mit
einfachen arithmetischen Mitteln moglich. Ahnliche Aussagen kann man in gleicher Weise fiir Keile mit
irgendeiner willkiirlich vorgeschricbenen Oberflichentemperaturverteilung erhalten.

BbIHYHIEHHAA KOHBEKINA AJA KJIMHOBBIX TEYEHNN C
HEN3O0TEPMUYECKUMN IIOBEPXHOCTAMU

Annoranna—llcenefoBanca mnpoHecc ycTAaHOBHMBIIErOCA Tenjoo0MeHa B JTAMHUHAPHBIX,
HECIKUMAEMBIX TOTPAHMYHBIX CI0AX C IIOCTOAHHBHIMM CBOHcTBaMM Npu OOTEKAHMHM TOBEpPX-
HOCTH €O CTYTIeHYATHIM paclpefesleHHMeM TeMllepaTypbl CTeHKN. AHAJIM3 HAUMHAETCA C
COOTBETCTBYIOILETO INpeo0pa3soBaHUA YPABHEHUA TEILNIOBOIO MOTPAHUYHOIO CIIOA, TaKOro,
4ro cHOpMyIMPOBAHHASA HEABTOMOJEJhHAA 3afaua MOeT GbITb MpejcTaBieHa GecKOHEYHOd
COBOKYIHOCTBIO MPOCTHIX, ABTOMOJEJLHBIX pellieHHil. 37eCh BAKHO TO 0GCTOATEJILCTBO, UTO
9T COCTABJIAINE ABTOMOIEIbHEIE PELIeHUA BHIPAMAIOTCA Yepe3 YHUBepCaJibHble GyHKINU
1, TAaKUM 06pa3oM, MOryT GhITh TaGyNIMPOBAHH Pas u HaBcerga. [JJif NnoJydyeHun pesyJibTaToB
BBICOKO{l TOYHOCTH 1Tpu unciax ITpasnTaA nopAgKa eqnHUIB HIV BHLIe TpedyeTca He0ONbIOE
YUCNIO0 YHUBEPCAIbHBIX OYHKUUMHA. 9T $yHKUUM npuBefiensl B Tabnune. C UX NOMOLIBIO
oIpefieJieHNe TeMIepaTyPHOrO MOJIA B MOTPAHMYHOM CJIOE, TAK e KAK M BeJIUYUHBL JOKAJI-
bHOrO KOd(P@uUUenTa TemnoofMeHa HA MOBEPXHOCTH KJIMHA, CBOTUTCA K HpOCTOi apudme
THueckoil onepanuu. CXOgHbIe pacuyéThl MOHHO MPOBECTH AJIA KIMHOB C 1I00HM MPON3BOIBHBIM
pacipefeseHieM 3aJlaHHOi TeMIlepaTypsl HOBEPXHOCTH.
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