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Akstraet-The steady heat transfer across faminar, incompressible, constant property boundary layers 
over wedges with a step discontinuity in surface temperature is investigated. The anaiysis begins with an 
appropriate transformation of the energy boundary layer equation with the consequence thaat the non- 
similar solution of the problem decomposes into an infinite sequence of simple, similar solutions. Of signifi- 
cance is the fact that these similar solutions are expressible as universal functions and, thus, can be tabulated 
once and for ail. For fluids with Prandtl number of the order of unity or larger, only a very few of the 
functions are needed to achieve results of high accuracy. A tabulation of such functions is given. With 
these, the determination of the temperature field in the boundary layer, as well as the local heat transfer 
rate at the wedge surface, becomes a matter of simple arithmetic. Similar information for wedges with any 

arbitrarily prescribed surface temperature distribution can likewise be obtained. 

NOMENCLATURE 

coeffkknts in series (4), beginning with 
n = Zanda, z a; 
(aPrj3 y/3. 
(3/2) (2. - B,- ’ ; 
specific heat ; 
thermal conductivity ; 
3b/2ab ; 
Prandtl number ; 
heat flux at wall ; 
Reynolds number = u&v; for flat 

0, 

n 

dimensionless coordinate defined in 

(2); 
dimensionless temperature defined in 

(6); 
thermal diffusivit;r ; 
kinematic viscosity ; 
transformed dimensionless coordi- 
nate defined in ffb); 
density. plate u1 = u, ; 

Stanton number = qW/c, pu, SuLcripts 

(T, - T,); for flat plate u1 = tl, ; 1, refers to edge of velocity boundary 

temperature ; layer ; 

velocity component in x-direction ; a, refers to free stream ; 

velocity component in y-direction ; W, refers to wedge surface. I 

wedge angle divided by x ; 
gamma function = j;~“- ‘e-” da ; 
incomplete gamma function = $$ 
cz”- ‘e-“dor; 

transformed dimensionless coordi- 
nate defined in (7a) ; 1. INTRODUCTION 

coordinate along wedge surface ; IN MANY technological applications, heat tsans- 
coordinate normal to wedge surface ; fer by convection takes place over surfaces which 

have a significant temperature variation in the 

* Present address, College of Agricultural Engineering, direction of the main ffow. This non-uniformity 
Punjab Agrictdtural University, Ludiana, Punjab, India. of temperature is often the consequence of 
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design requirements. Rubesin [l, 21 was pro- 
bably among the first to recognize its importance 
in the prediction of convective heat transfer rates. 
In the steady flight of an aircraft or other objects 
through the atmosphere, the boundary layer over 
the forward portion of surfaces is generally 
laminar. It is known that the influence of the 
non-uniformity of wall temperature on the heat 
transfer rate is more pronounced in laminar than 
in turbulent flow. In the present investigation, 
we restrict ourselves to the consideration of 
laminar. incompressible. two-dimensional boun- 
dary layers over wedges of an arbitrary opening 
angle. The main objective is to develop a 
procedure that would lead to results by which 
the aforesaid influence can be readily and 
accurately ascertained. Because ofthe linearity of 
the energy equation, the heart of the problem is 
to find the solution for a wedge with a step 
discontinuity in surface temperature. 

Tribus and Klein [3] reviewed in 1952 the 
general problem of heat convection from non- 
isothermal surfaces and presented a summary of 
analytical results available at that time. They 
described an ingenious procedure of finding the 
wall temperature distribution when the heat 
flux was prescribed. It made use of an integration 
kernel which was appropriately modified from 
that associated with a step discontinuity in 
surface temperature. Of the more than a dozen 
investigations reviewed in [3], the one by Levy 
[4] dealt with incompressible, laminar wedge 
flows. Consideration was there given to the case 
in which the wall temperature had a power law 
variation and the dissipative effects were negli- 
gible. Under these conditions, the temperature 
field is similar and, thus, the analysis becomes 
greatly simplified. Tribus and Klein mentioned 
a paper by Bond [5] which is also concerned 
with wedge flows. To facilitate the solution of 
the energy boundary layer equation, Bond used 
a linear velocity distribution. The same approxi- 
mation was adopted by Lighthill [6] in his 
analysis of the general problem of heat transfer 
across a laminar boundary layer with arbitrary 
distribution of main stream velocity and of wall 

temperature. Both Lighthill’s and Bond’s solu- 
tions are asymptotically correct for large Prandtl 
number fluids. For a fixed Prandtl number, the 
approximation is best for Rows without longi- 
tudinal pressure gradient. No attempt was made 
in [3] to discuss the implications of the foregoing 
approximation. 

A number of papers concerning the prediction 
of heat transfer from non-isothermal surfaces 
appeared since 1952. They are reviewed in a 
recent thesis by the junior author [7] and, thus, 
will not be repeated. Suffice it to state that 
attempts aiming at improving Lighthill’s result 
have been made by incorporating a more 
accurate velocity distribution. These attempts 
have not generally been successful. 

2. PROBLEM STATEMENT, GOVERNING 
EQUATION AND COORDINATE 

TRANSFORMATION 

Consideration is hereby given to the steady, 
two-dimensional, laminar, incompressible flow 
over a wedge at sufficiently high Reynolds 
numbers that the usual boundary layer simpli- 
fication is valid. The physical model and the 
coordinate system are shown in Fig. 1. An 

Ffc. 1. Physical model and coordinate system 

initial portion of the wedge surface of length so 
is at the temperature T, of the incoming fluid. 
The remaining portion of the wedge surface, 
x > x0, has a uniform temperature T, which is 
different from T,. The resulting temperature 
variation is limited so that possible changes in 
fluid properties are small and may be ignored. 
Under the foregoing conditions, the thermal 
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problem becomes linear and solutions for any 
arbitrary surface temperature can be obtained 
by superposition. Since the dissipative effects, 
if significant, can be separately assessed, they 
will not be included in the analysis which follows. 

For a wedge of included angle nfi, placed 
symmetrically in a uniform main stream, the 
velocity u, at the edge of the boundary layer is 
Cx”, C being a constant and m = /I/(2 - fi). 
Falkner and Skan were the first to recognize 
that the velocity profile in such boundary layer 
flow is similar and, later, Hartree obtained 
detailed solutions for the flow field. It is now 
well known (see e.g. [S]) that the velocity 
components (u, u) are given by 

; =,f: ; Ret = - (2 - /I-” [f - (1 - lJ)@‘] 

(la,b) 

where q is the similarity variable defined as 

1 u,* ( > -- 
V=y 2-flvx 

(2) 

and the dimensionless stream function f(q) 
satisfies 

f”‘+f” + /? [l-(f)21 = 0 (3) 

with 

f(0) =f’(@) = 0; f’(a) = 1. (3a) 

In the foregoing, the primes denote differentia- 
tion with respect to q. The power series solution 
forfis 

with 

a, = a, a3 = --/I, a4 = 0, a5 = (28 - l)a’, 
a6 = -2(3/I - 2)/?a,a, = 2(38 - 2)fi2,etc. (4a) 

Numerical values of a for various /I have been 
extensively tabulated; the more recent ones are 
by Elzy and Sisson [8]. 

Under the assumptions previously stated, the 
energy boundary layer equation is 

dT dT d2T 
U~+D$=fcayZ (5) 

and its solution which we seek must satisfy the 
following entrance and boundary conditions 

T(s,, y > 0) = T, (54 

T(x > x,,, 0) = T,, T(x,m) = T,. (%c) 

Because of the presence of the reference length 
x0, the temperature field is, in general, non-simi- 
lar. 

To facilitate analysis, we introduce a dimen- 
sionless temperature function, 

T-T g=a, 
Tw - Tm 

and a coordinate transformation, 

Cl+ 

1 (74 

(a) 

Clearly, both X and 5 are dimensionless. The 
specific forms chosen are motivated from the 
following considerations. 

(ij In anticipation of developing a series 
solution in powers of X, it would be desirable to 
have the range of X restricted. Equation 7(a) 
requires that X is bounded between 0 and 1. 

(ii) The approximation of using a linear 
velocity distribution corresponds to retaining 
only the first term of the series for f; i.e. 
f = (1/2)a$. Under this condition, the tempera- 
ture field becomes self-similar [5]. For later 
reference, it will be designated as the reduced 
problem. The transformed coordinate 5 defined 
in (7b) is the similarity variable of the reduced 
problem. 

(iii) In order that the end result of the analysis 
has general applicability and is simple to use, 
individual terms in the series solution should 
only comprise of functions that are universal, i.e. 
they can be tabulated once and for all. Further- 
more, it is desirable, though not necessary, that 
the dominant terms of the series can be expressed 
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in closed form, thus rendering possible an analy- Hence, the boundary conditions (9a, b) are 
tical description of the essential features of the satisfied. Upon substituting (12) into (8) and 
solution. comparing the coefficients of Iike powers of X, 

Using (6) and (7a.b) (5) becomes we obtain a sequence of second order, linear, 

$+; XAn) + 
[ 

l+&/,(V) ; 1 
ordinary differential equations which are given 
below (the primes denote differentiation with 
respect to 5). 

(8) f;d’+ 3<‘Fb = 0 (14a) 

with 
F’; + 35’F’i - ?<F, = glFb WW 

0(X,0) = 1, 6(X,co) = 0. (f&b) 
F; + 35’F; - 65F, = glF; - h,F, (14c) 

In(8),0 G X 6 land0 < 5 < a;theargument 
etc. In general, for n 3 1 

q of the stream function is related to 5 according K + 3t2FL - 3n<FR = &Fb + G IF’, 
to (7b). Because of the form chosen for <, the + . . , + 9, F;_ , - h,_ ,F, - 2h,_,F, 
entrance condition (5a) merges into (9b). 

If the entire wedge surface has a uniform wherein - ’ ” 
- (?I - l)h,F,_, 

temperature, then x0 = 0 and, hence, X = 1 1 . 
and-< = bq. When this occurs, 8 depends only on 9, = - i 2 4 3, g2 = 0, 
of and (8) and (9a,b) reduce to the following 
familiar forms. 

d28iso 

dyZ 
+ prfdeisa = 0 

dn 
(10) 

with 
g4 = - 3 $bPr 

lx __%5” + 2&3, 

The subscript iso refers to the isothermal sur- 
face condition. The solution of (10) satisfying 

etc and 
. 

(1 la,b) has been extensively studied. A recent 
tabulation of the wall derivatives &,(O) for wide 
ranges of Pr and j? may be found in [9]. 

(14) 

. (15) 

3. SOLUTION METHOD AND RESULTS 

We seek a series solution for (8) of the form 

Equation (14a) with the assigned boundary 
conditions, F,,(O) = 1 and F,(w) = 0, can be 
integrated in closed form. The solution is 

8 = f F&)X” (12) 
n=O F 

0 

= 1 IY(l!3), t31 

with 
lV/3) 

and 
F,(O) = 1; F,(O) = F2(0f = . . . = 0 (13a) 

F6(0) = - ~j = - 1.1198. 
and ; 

PO(~) = F,(m) = . . . = 0. (13b) An examination of the equation set 

(16) 

(17) 

(14) in 
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conjunction with (15) reveals that, if all a,‘s The equation for F, can also be integrated in 

vanish, except a,, then all F,‘s other than F, closed form. Since gr = (3/2)(/?/~b){~ and Fb = 
would vanish. This is the case whenf = (1/2)a$. - [3/r(1/3)]e-c’, (14b)can be written as 
Hence, the solution of the reduced problem 
previously defined is simply F’; + 3t2F; - 3tF, = - ~- 9 ’ c3e-c3. (23) 

2r( l/3) ab 
9 = F, 

and the corresponding wall heat flux is 

qw = - k(T, - T,)$;Fb(O) 

(18) If a related function F, is defined such that 

F, = MF, (24) 

with 

1 2.4, 1’2 
= 0.6163k(T, - T,) 2 _ p vy ( -) 

(aP?y3 x- l. (19) 

These are precisely Bond’s results 151, although 
they were obtained by Bond from a totally 
different procedure. Since the local friction 
coefficient is 

c,=2v=qO)=2 
1 v+ 

n: ay ( > m= a, (20) 

(19) may be expressed in terms of the local 
Stanton number as 

St Prf 2 = 0.6163ae3 X- ‘. (21) 

M2P 
2 ah (25) 

then 

F;’ + 3t2F, - 35F, = - rl&<3e-(’ (26) 

with F,(O) = F,(co) = 0. Clearly, F,, like F,, 
depends only on 5 and, thus, can be tabulated 
once and for all. For this reason, they will be 
referred to as universal functions. 

An equivalent form of (26) is 

($)I’ +(_:+3r’>($ -&2,-P 
(27) 

Cf 

For a flat plate, /3 = 0, a = 0.4696, 
which, upon integrating twice and using the 

X = [ 1 - (x0/x)*] f and, hence, (21) reduces to 
stated boundary conditions, yields 

2 1.020 

St Pr3 < = [l - (x0/x)‘]+ (22) F, = &) 5[r(4/3) - r(4/3, t311. (28) 

which becomes identical to Eckert’s result [lo] 
if the numerical constant 1.020 is replaced by 
unity. Eckert deduced his expression from the 
integral heat balance equation, using third- 
degree polynomials for both the velocity and 
temperature profiles. Considering the fact that 
(22) is obtained for linear velocity distribution, 
the close agreement is probably fortuitous. 

For large Prandtl number fluids, the thermal 
boundary layer is everywhere thin relative to 
the velocity boundary layer. Under such circum- 
stance, (18) (19) and (21) may be expected to 
yield very satisfactory results. We shall return 
to this point later. 

It follows that 

F;(O) = ;. (29) 

An inspection of the equation for F, discloses 
that it, too, can be rewritten in terms of a uni- 
versal function F, defined by 

F, = M’P,. (30) 

The fourth function F, can be expressed as a 
linear combination of two universal functions 
F,, 1 and F,, z according to 

F, = M3F3,1 + ~ 
l-2$ 

pr 3.2. (31) 
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Table 1. Vnicersalfinctions 

5 FO F, x 10 P, X loa F,,, X lo2 F,,, X 10 Fb,,t x lo2 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
l-7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 

1GOOtXI 
088804 
0.77648 
0.66630 
0.55910 
0.45697 
0.36225 
0.27725 
0.20386 
0.14328 
009574 
0.06049 
0.03593 
0.01995 
0.01029 
oGO491 
OGO216 
OGOO88 
oWO33 
000013 

04OOQO 
0.06666 
0.13316 
0.19867 
0.26116 
0.31706 
0.36147 
0.38899 
0.39506 
0 37765 
0.33843 
0.28298 
0.21967 
0.15747 
0.10369 
0.06238 
0.03409 
0.01683 
0.00746 
OW296 
oGO104 
000032 

OOCOOO 
0.08177 
0.16382 
0.24688 
0.33209 
0.42073 
0.51350 
0.60917 
0.7028 1 
0.78437 
0.83922 
0.85157 
0.8 1056 
0.71627 
0.58216 
0.43160 
0.28971 
0.17486 
0.09430 
0.04515 
0.01907 
000706 
000227 
OGOO63 
000015 

OWOOO 
0.01721 
0.03453 
0.05221 
0.07060 
0.09012 
0.11120 
0.13425 
0.15949 
0.18668 
0.21455 
0.24016 
0.25871 
0.26439 
0.25259 
0.22249 
0.17851 
0.12909 
0.08339 
0.04774 
0.02405 
0.01058 
oGO404 
0.00133 
000037 

040000 
0.02075 
0.04164 
0.06301 
0.08528 
0.10866 
0.13274 
0.15603 
0.17580 
0.18850 
0.19073 
0.18060 
0.15877 
0.12868 
0@9552 
O-06453 
0.03945 
0.02170 
0.01068 
OGI467 
OGO181 
0@0062 
O0JO18 

0~00000 
0~04140 
0.08136 
0.11628 
0.14078 
0.14881 
0.13567 
0.10015 
0.04626 

-0.01671 
-0.07615 
-0.11996 
-0.14056 
-0.13732 
-0.11606 
- 0.08609 
- 0.05630 
- 0.03240 
-0.01625 
- 0@0688 
-0GO218 
-0GOO11 

F,,,t x lo2 

OG)OOO 
- 0.01046 
-0.02110 
- 0.03240 
- 0.04523 
- 0.06082 
-0.08061 
-0.10542 
- 0.13406 
-0.16152 
-0.17859 
-0.17433 
-0.14166 
-0.08325 
-0.01312 

0 04866 
0.08583 
0.09356 
0.07890 
0.05465 
0.03180 

-0.01573 
0.00667 
0.00249 
0+.)0089 

tF,,, and F,,, valid for /I = 0 onlv. 

The associated boundary conditions are, 
respectively, F,(O) = F,(co) = 0 ; F,, i(0) = 
F,.,(m) = 0 and F, *(O) = F,, 2(co) = 0. The 
resulting differential equations, however, have 
not been solved in closed forms. They were 
integrated numerically, using routine iterative 
techniques on the computer with a uniform 
step size of A< = 005. Some details may be 
found in [7]. The results, along with other 
universal functions, are given in Table l*. They 
are also shown graphically in Figs. 2a and 2b. 
The associated wall derivatives are 

F;(O) = 0.81748 x lo-* (32) 

F;, i(0) = 0.17204 x 10e2 and 

F;,,(O) = 0.20737 x 10-l. (33a, b) 

* More complete data with 5 at multiples of 0.05, begin- 
ning at 0 and extending to 3.95, are on deposit in the Heat 
Transfer Laboratory, Department of Mechanical and 
Industrial Engineering. 

To check the accuracy of the numerical 
procedure, the same computer program was 
used to evaluate F,, F;(O). F, and F’,(O) and the 
data were compared with the respective closed 
form solutions given earlier. Values of the 
gamma functions which appear in (16) and (28) 
were taken from [ 111. It was found that the 
wall derivatives were in agreement up to the 
fifth significant figure and all values of F, and 
F, agree to at least four significant figures for the 
entire range of 5. 

A study of the general equation (14) shows 
that it is always possible to express the F, 
functions as linear combinations of universal 
functions. The resulting second order, ordinary 
differential equations can be routinely handled 
on the computer. However, for fluids of Pr of 
the order of unity and larger, highly accurate 
results are obtainable with the several functions 
already evaluated. An estimation of the maxi- 
mum error resulting from retaining a finite 
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08 

0 
0 04 08 12 1.6 20 24 

FIG. 2a. Universal functions for wedges with arbitrary open- 
ing angle. 

-0.4 1 I I I I I 

0 0.4 0.8 1.2 1.6 2.0 2-4 

Ac. 2b. Universal functions for a ~mi-in~n~te fiat plate. 

number of terms in the series (12) will be pre- 
sented in Section 4. 

With the information provided in Table 1 
and the values of the wall derivative listed, the 
determination of the temperature field in the 
boundary layer and the local wall heat flux for 
wedges of any arbitrary opening angle becomes 

a matter of simple arithmetic. Before proceeding 
further, we summarise the results as follows 

(a) ~e~~erut~re~ezd in ~~undury luyer 

6(X, 43 = f F,WX” 
n=O 

= F, + MF X + 1 M2F X2 2 

+, M3P3,1 + -~ 
1--2fiF 

Pr 
x3 + I.. 

(b) Heatflux at wull 

where 

cr- 1 v* 
2- ( ) 22,I, a 

(34) 

(35) 

(35a) 

and 

m 

-$(X,0)= - c Fk(O)X” 

n=o 

=: 1.1198 - ; MX - 0.81748 x lo-’ MZX2 

- O-17204 x lo- 2 M3 + 0.20737 

x 1()-11 -28 

Pr > 
x3 + . . . Wb) 

In theabove, M = (3/2)(j?/ub) = 2.7257/3Pr-*a-* 
and X = [l - (x,/?c)“~“~-~)]*. The <-coordin- 
ate is related to y through (2) and (7b). 

The case of longitudinal flow past a semi- 
infinite flat plate (b = 0) is of particular interest, 
both from the theoretical and practical point of 
view. In this instance, F 1 and F, are identically 
zero; so are F, and F,. Moreover, since M = 0, 
F, = Pr-IF 3,2. To provide one more non- 
vanishing term in the series solution, we have 

evaluated F,. The latter is expressible as a 
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combination of two universal functions as 
according to 

F, = Pr-‘F,., + P~Y~F,,~. (36) 

Data for these two universal functions are also 
included in Table 1. Their wall derivatives are 

F;i. 1(O) = 0.41502 x 10e2 and 

Q2(0) = - 0.10445 x 1op2. (37a, b) 

Hence, for this case of flow with zero pressure 
gradient, the temperature field is 

0(X, 5) = F, + Pr- ‘F,, 2X3 

+ Pr- ‘(F,. 1 + Pr- ‘F, JX’ + . . . (38) 

and the wall flux is 

4w 

CpP%K’ - Tm) 
= 0.30247Re-” Pr-* X-’ 

[-$(X,0)] (39) 

wherein 

- g (X, 0) = 1.1198 - 0.20737 x lo- ’ Pr- ’ X3 

- PC1 (0.41502 - O.l0445Pr- ‘) x lo- 2 X6 

+ . . . (39a) 

and 

X = [ 1 - (x0/s)*] *, r = 0.30247Prf(yjs)Re* X- ’ 

The development of the temperature profile 
in the boundary layer, downstream of the surface 
temperature discontinuity, can be readily ob- 
tained from (34) or (38). They are illustrated in 
Figs. 3a, b and c, respectively, for a flat plate 
(p = 0), a wedge with 90 degree included angle 
(j = 0.5) and the stagnation flow condition 
(B = 1.0). In each figure, groups of profiles are 
shown for Pr = 1, 10 and 100 and for three 
locations along the wedge surface. The results 
show that at .x,,;.x = 0.95, i.e. a location at which 
the unheated length is 95 per cent of its distance 
from the leading edge, considerable develop- 
ment of the thermal boundary layer has already 
taken place. At x0/x = 0.05 the development is, 
for all practical purposes, complete. In fact, if the 
fully developed similar profiles were plotted, 
they would fall on those for x0/x = 0.05 within 
the width of the line. 

005 
.x 

x 
;;b 

095 ---- 
050 --- 
005 - 

10 05 0 
e e e 

FIG. 3a. Development of temperature profile downstream of the step 
discontinuity in surface temperature-p = 0. 
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M I 
Pr = 10 I 

L9 6 8 

FIG. 3b. Development of temperature profile downstream of the step 
discontinuity in surface temperature-j .= 0.5. 

(a) 
Pr = 1 

(b) 
Pr= 10 

1371 

FIG. 3c. Development of temperature profile downstream of the step 
discontinuity in surface temperature-b = 1.0. 

4. ACCURACY OF RESULTS 
as corrections for the departure of the actual 
velocity profile from the linear distribution. 

As has been pointed out earlier, the first term Within a short distance downstream of the 
of the series in (34) represents the mathematically surface temperature discontinuity, the thermal 
exact solution to the problem when the velocity boundary layer is thin and the corrections are 
distribution is linear. The rest may be regarded small, regardless of the Prandtl number. On the 
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other hand, at sufficiently large distance down- 
stream where the thermal boundary layer has 
had significant development, its thickness rela- 
tive to the velocity boundary layer depends on 
the Prandtl number. The effect on the tempera- 
ture field due to the nonlinearity in the velocity 
distribution will manifest itself to the fullest 
when X = 1. Thus, the maximum error resulting 
from using a finite number of terms in the series 
occurs at X = 1. A portion of such error is 
intimately connected with the inaccuracy in- 
herent in the representation of the Falkner-Skan 
stream function by the power series (4) which has 
a limited radius of convergence. 

It is clear that, when x0 = 0, X = 1 for all 
x’s > 0. This is the situation when the entire 
wedge surface has a uniform temperature. 
Hence, by setting X = 1 in (34) and comparing 
the results to those obtained from integrating 
(10) with boundary conditions (1 la, b}, an upper 
~~~~ of the errors for the entire range of (: can 
be established. To this end, both (3) and (10) 

were numerically integrated, using a scheme 
essentially identical to that for evaluating 

F,, F,* 1, F,,,, etc. Since the wall derivatives 
f”(0) and #am are known, the integration 
involves no iteration. In our computation, the 
wall derivative data were taken from [9]. 

If one denotes the said upper bound of error 
by (&I?),, then 

(ML = W, &.s, - @is* WV 

where 5 = by The subscript t.s. designates 
truncated series. Clearly, (Se), depends on 5 ; 
it vanishes at 5 = 0 and as 5 -+ co. The particular 
value of r at which (&I), exhibits an extremal 
depends on Pr and /?. A summary of the rest&s 
of an extensive calculation is compiled in Table 
2 which lists the extremes of the upper bound 
error for the entire range of Pr and B investi- 
gated. Included for the purpose of comparison 
are error data evaluated from Bond’s equation 
which is for the linear velocity dist~bution and 
corresponds to the first term of our series. As 

Table 2. Extremes of upper bound error in temperaturefield, (SO),, exaena, 
?zY.=== 

0.72 1 10 100 
-- -- -.-- ___-.. -~- 

Present Bond Present Bond Present Bond Present Bond 

-0.1 0.01260 0.02158 oGO594 0~02102 -0.00152 0.01746 - OGOO23 OGO297 
0.0 oGO339 -0.01950 OGO248 -0.01470 OGOO24 -000165 oQoOO2 oGoo17 
0.2 0*01330 -0.05186 OGO842 -0w.577 0~00205 -0.01705 o+lOO77 0+X)732 
0.4 0.01537 -0.07255 0.01185 - 0.06330 oQo3 14 -0.02530 0-00119 0.01099 
0.6 0.02028 - 0.08492 001481 - 0‘07554 OGO382 -0.03117 0‘00155 0.01346 
0.8 0.02312 - o@xio2 0.01747 - 0.08521 ow494 - 003528 OGO176 0.01545 
I.0 0.02609 -0*10540 0.02036 - OS305 0@0519 -@03931 0~00199 0.0 1705 

-. -YzZZZz 

Table 3. Upper bound error in wall temperature derivative 1 - @‘(l,O),,,,/f&,(O) 

0.72 1 10 100 
-. 

Bond Present Bond Present Bond Present Bond 

-1.0 - OQO361 0.03691 
0.0 oGO3Oo - 0.02683 
0.2 OGO8f7 -0.08292 
0.4 QOlo47 -0.11948 
0.6 eOl.518 -0.14270 
0.8 0.01674 -0.16364 
1.0 0.01771 -0.18154 

-0GO654 0.03567 - 000197 0.02734 - 000096 0,01412 
OGOl66 - 0.02005 OWOO1 -0~00221 OQOOOO - oGoO22 
oGOO43 - 007261 000129 - 002680 000059 -0.01149 
0@0777 -0.10333 @00221 -0@4017 o&l092 -GO1731 
0.01046 -0.12548 OX@273 - 0.04977 OX@124 -0.02127 
0.01237 -0.14337 000377 - 0.05668 0~00139 - 0.02444 
0.01412 -0.15822 O-00383 -0.06332 0*00156 - 0.02701 
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has been explained earlier, the use of a linear 
velocity profile would lead to satisfactory results 
when Pr is large. This is indeed borne out by the 
data. 

By following a similar line of reasoning, one 
is also led to conclude that the upper bound 
error in the wall heat flux resulting from using a 
finite number of terms in (35b) or (39a) would 
occur when X = 1. Since the numerical values 
of the wall temperature derivative vary with Pr, 
it is convenient to express such error in a ratio 
defined as 

l  _ w> 0)t.s. 
f-KS,@) . 

Table 3 provides this information. It is seen that, 
for Pr = 1, Bond’s expression entails an upper 
bound error of 15.8 per cent when p = 1, while 
the corresponding error in using four terms of 
our series is 1.4 per cent. The exceptionally 
high accuracy of the flat plate data (p = 0), 
evaluated from the present, as well as from 
Bond’s expression, as shown in both Tables 2 
and 3, is mainly due to the fact that, in the 
absence of longitudinal pressure gradient, the 
curvature of the velocity profile vanishes at the 
wall. In addition, the series expressing 

@e/a<) (l>O) g’ as lven in (39a) for the flat plate 
has effectively more terms than the one given in 
(35b). 

Recently, Clausing [12] reported wall flux 
data for longitudinal flow past a flat plate and 
for Pr = 0.72 and 1.0. The data were obtained 
by directly solving the governing conservation 
equations for the boundary layer flow, using an 
all numeric, finite difference technique. A com- 
parison of the data evaluated from (39) and 
(39a) with those of Clausing for x,,/x ranging 
from 0.05 to 0.909 reported by him shows that 
in no case the discrepancy exceeds 0.4 per cent. 
Clausing estimated that the absolute error in his 
data was less than 0.5 per cent for 01 < (x,,/x) 
< 0.9. Hence, all evidence demonstrates beyond 
doubt that the main results of the present analy- 
sis--(34) or (38) for the temperature field; (35) 
or (39) for the wall flux-are highly accurate for 

fluids of Prandtl number comparable to or 
greater than that of air. They are also simple 
to use. However, similar accuracy is not likely 
to obtain for smaller Prandtl number fluids. 
An inherent error in the present analysis is the 
representation of the velocity function f by the 
power series (4) which has a limited radius of 
convergence. This source of error is negligible 
in high or moderately high Prandtl number 
fluids since the thermal boundary layer is 
everywhere confined to a relatively thin region 
adjacent to the solid surface. This is not the case 
when the Prandtl number is small. 

An inspection of (34), (35b), (38) and (39a) 
shows that, when Pris ofthe order of 1O-2-1O-3, 
the series does not converge except when X is 
small. When this occurs, one may tacitly assume 
that they are semi-divergent and Euler’s trans- 
formation may be used for the evaluation of the 
sum. Based on our own experience and that 
reported in [ 131, the following procedure is 
tentatively suggested. 

To begin with, more terms in the series should 
be computed. Since the exact solution for the 
problem is available for a wedge with uniform 
surface temperature and without the restriction 
on Pr, the optimum number of terms to be 
retained in the series and the best starting 
point for the application of the Euler transforma- 
tion can be ascertained by comparing the results 
obtained for X = 1 with the corresponding 
exact solution. The same number of terms is then 
used in evaluating the sum of the series when 
X # 1 with the Euler transformation applied 
in precisely the same manner. 

5. CONCLUDING REMARKS 

With the information provided in Table 1 
and the values of the wall derivatives of the 
universal functions given in the text, problems 
with any arbitrarilly prescribed surface tempera- 
ture variation can be handled in a straightfor- 
ward manner either formally via the Duhamel’s 
integral or by numerical superposition. We 
refrain from giving the details since they are 
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well documented in the literature. It is our hope 
that the modus operandi of the analysis de- 
scribed in this paper could be extended to treat 
general two-dimensional and axisymmetrical 
boundary layer flows. If this can be achieved, 
then the Lighthill analysis is truly improved. 
It is also conceivable that the highly accurate 
results presented in the paper could usefully 
serve as a comparison standard in the study of 
trial solutions associated with integral methods 
as described by Walz [14]. 

ACKNOWLEDGEMENTS 

The authors wish to thank Dianne Merridith for her 
skilful typing of the manuscript. 

This work was performed under a National Science 
Foundation Grant GK-16270 of the U.S. Government. 

REFERENCES 

M. W. RUBESIN, An analytical investigation of the heat 
transfer between a fluid and a flat plate parallel to the 
direction of flow having a step wise discontinuous 
surface temperature, MS Thesis, University of 
California, Berekely (1945). 
M. W. RUBBIN, The effect of an arbitrary surface 
temperature variation along a flat plate on the con- 
vective heat transfer in an incompressible turbulent 
boundary layer, NACA TN 2345 (1951). 
M. TRIBUS and J. KLEIN, Forced convection from 
non-isothermal surfaces, Heat Transfer Symposium, 
Engineering Research Institute, University of Michigan 
(August 1952). 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Il. 

12. 

13. 

14. 

CONVECTION FOR&E D’UN ECOULEMENT AUTOUR D’UN DIEDRE POUR DES 

S. LEVY, Heat transfer to constant-property laminar 
boundary layer flows with power function free-stream 
velocity and wall temperature variation, J. Aeronauf. 
Sci. 19, 341-348 (1952). 
R. BOND, Heat transfer to a laminar boundary layer 
with non-uniform free stream velocity and non-uniform 
wall temperature, Institute of Engineering Research, 
Ser. 2., No. 10, University of California, Berekely (1950). 
M. J. LIGHTHILL, Contributions to the theory of heat 
transfer through a laminar boundary layer, Proc. R. 
Sot.. Lond. A202, 3599377 (1950). 
L. S. CHEEMA, Forced convection in laminar boundary 
layer over wedges of arbitrary temperature and flux 
distribution, Ph.D. Thesis, University of Illinois at 
Urbana-Champaign (1970). 
H. SCHLICHTING, Boun&ry-Luyer Theory. 6th edn, 
Chapter 8. McGraw-Hill, New York (1968). 
E. ELZY and R. M. SISSON, Tables of similar solutions to 
the equations of momentum. heat and mass transfer in 
laminar boundary layer flow, Engineering Experiment 
Station Bulletin No. 40, Oregon State University, 
Corvalhs (1967). 
E. R. G. ECKERT and R. M. DRAKE, JR., Heut und Muss 
Transfer. 2nd edn. Chapter 7. McGraw-Hill, New York 
(1959). 
M. ABRAM~WITZ and I. A. STEGUN, Hundbook of 
Muthemutical Functions. National Bureau of Standards, 
Applied Mathematics Series 55, (1964); also, Dover 
Publications, New York (1965). 
A. M. CLAUSING, Finite difference solutions of the 
boundary layer equations, ME Technical Report 138-l. 
University of Illinois at Urbana-Champaign (1970). 
J. L. S. CHI.N and B. T. CHAO, Thermal response be- 
havior of laminar boundary layers in wedge flow, Int. J. 
Heat Muss 71.trabjer 13. 1101 I1 14 (1970). 
A. WALZ. Boundury Layers of Flow und Temperature, 
English translation by H. J. OSER. M.I.T. Press, 
Cambridge, Mass. (1969). 

SURFACES NON ISOTHERMES 

Rhm-On etudie le transfert thermique a travers des couches limites laminaires incompressibles a 
proprietts constantes sur des ditdres avec une temperature parittale en echelon. L’analyse debute par une 
transformation appropriee de l’equation d’energie de la couche limite avec pour consequence que la 
solution du probltme se decompose en une suite infinie de solutions simples rtduites. L’inttrCt en est que 
ces solutions reduites sont exprimables comme des fonctions universelles et par suite peuvent &tre tabulees 
une fois pour toutes. Avec des fluides ayant des nombres de Prandtl de I’ordre de I’unite ou plus, seul un 
petit nombre de fonctions sont necessaires pour obtenir des resultats avec precision. Une tabulation de ces 
fonctions est don&e. La determination du champ de temperature dans la couche limite aussi bien que 
le flux par&al local est une affaire d’arithmttique elementaire. Une information semblable pour des diedres 
avec une distribution de temperature superficielle don&e quelconque peut Btre obtenue de la meme facon. 

ERZWUNGENE KONVEKTION BE1 KEILSTROMUNG MIT 
NICHTISOTHERMEN OBERFLACHEN 

Zusammenfassung~ Es wird die stationare Warmeiibertragung in laminaren. inkompressiblen Grenz- 
schichten mit konstautcn Stoffeigenschaften tiber Keile mit stufenfiirmigem Sprung in dcr OberflBchcn- 
temperatur untcrsucht. Die Analysis beginnt mit einer geeigneten Transformation der Energiegleichung 
der Grenzschicht, aus der folgt. dass die nichtlhnliche LBsung des Problems in eine unendliche Folge von 
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einfachen ahnlichen Losungen zerfallt. Wichtig ist die Tatsache, dass sich diese lhnlichen Liisungen als 
universelle Funktionen ausdriicken lassen und deshalb ein fir allemal tabelliert werden kiinnen. Fur 
Fliissigkeiten mit Prandtl-Zahlen in der Grossenordnung von eins oder griisser werden nur einige wenige 
dieser Funktionen gebraucht, urn Ergebnisse mit hoher Genauigkeit zu erzielen. Einige Tabellen fiir 
solche Funktionen werden angegeben. Mit diesen wird die Bestimmung des Temperaturfeldes in der 
Grenzschicht ebenso wie die Bestimmung der ijrtlichen Warmestromdichte an der Keiloberflache mit 
einfachen arithmetischen Mitteln miiglich. #hnliche Aussagen kann man in gleicher Weise fur Reile mit 

irgendeiner willkiirhch vorgeschricbenen Oberfllchentemperaturverteilung erhalten. 

BbIHYXfflEHHAFI HOHBEHHHFI AJIH HJIHHOBbIX TEHEHMM C 
HEHBOTEPMMYECKBMH HOBEPXHOCTRMH 

AHHOTaqUsI-MCCneROBancR npOueCC yCTaHOBHBIIIerOCR TenJIOO6MeHa B JIaMHHapHbIX, 

HeCPKKHMaeMbIX nOrpaIIWIHbIX CJIORX C nOCTORHHbIMl4 CBOitCTBaMll npkl 06TeKaHHH nOBepX- 

H~CTM co cTyneHYaTbIM pacnpenenemeM TeMnepaTypbI CTeHKM. AHam Ha'lMHaeTCR C 

COOTBeTCTByIOII(er0 npeo6pa30BaHm ypaBHeHWI TenJIOBOrO nOrpaHHYHOF0 CJIOH, TaKOlYO, 

VT0 C@OpMyJIl%pOBaHHaH HeaBTOMOAeJIbHaR 3aAa'Ja MOH(eT 6bITb IIpeRCTaBJIeHa 6eCKOHe'IHOil 

COBOKynHOCTbH) npOCTbIX, aBTOMOJJeJIbHbIX peIIIeHHfi. 3geCb BaFKHO TO 06CTORTeJIbCTB0, qT0 

3TH COCTaBnHIO~He aBTOMOAeJIbHbIe peIIIeHHR BbIpalKaloTCR qepe3 YHMBepCaJIbHbIe $yHKIW 

M,TaKIIM o6pa30M, MOryT6bITbTa6yJIMpOBaHbIpa3 M HaBCePAa.&IH nOJIyseHkiR pe3yJIbTaTOB 

BbICOKO~T04HOCTMnp~~llCJraX~paH~T~RnOprl~Kae~llHll~bIBJIHBbI~eTpe6yeTCRHe6O~b~Oe 

'4lJCJIO yHRBepCaZbHbIX @yHKI@. 3TM @yHKUHH npMBeAeHb1 B ra6nnue. C IIX nOMOWbH) 

onpeaeneme TeMnepaTypHoro nom B norpaHmHon cnoe, TaK me KaK n Bemm4HbI noKan- 

bHOr0 KOENj@MqHeHTa TenJIOO6MeHa Ha nOBepXHOCTll KJIHHa, CBOAIlTCR K npOCTOfi ap@Me 

TMYeCKO~One~a~n~.~XO~HbIepaC~~TbIMO~HOnpOBeCTB~JIRKJII?HOBC nto6b1~ npOI43BO.ilbHbIM 
pacnpeAenenueh4 aanaunofi TeMneparypn rrosepxnocrt4, 


